首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 26次   下载 0 本文二维码信息
码上扫一扫!
基于优化RBF神经网络的无线室内定位
刘夏,莫树培,何惠玲,杨军
0
(1.贵州工业职业技术学院 电子与信息工程学院,贵阳551400;2.中南大学 自动化学院,长沙 410083)
摘要:
针对径向基函数(Radial Basis Function,RBF)神经网络算法在无线网络室内定位中拓扑结构和网络参数难以确定,其定位效果不理想的问题,提出了一种用核主成分分析的模糊C均值聚类算法(Fuzzy C-Means clustering algorithm based on Kernel Principal Component Analysis,KPCA-FCM)和模拟退火自适应遗传算法(Simulated Annealing adaptive Genetic Algorithm,SAGA)优化RBF神经网络的无线室内定位算法。首先利用KPCA对原始训练数据样本进行数据预处理,再通过KPCA-FCM算法计算出最优聚类数目和聚类中心点;其次将聚类数目和聚类中心点作为隐含层神经元个数和中心值,创建RBF神经网络,并将其网络参数映射到SAGA算法中;再次由SAGA算法进行网络参数寻优,把最优的解映射回RBF神经网络;最后利用样本数据对RBF神经网络进行训练和测试,完成建立RBF神经网络算法模型。实验表明,在相同的环境中,所提算法比传统RBF神经网络定位精度提高了48.41%。
关键词:  室内无线定位  RBF神经网络  核主成分分析  模糊C均值聚类  模拟退火自适应遗传算法
DOI:
基金项目:贵州省科技厅联合基金资助项目(黔科合J字[2014]2082;黔科合LH字[2016]7069)
Wireless Indoor Positioning Based on Optimized RBF Neural Network
LIU Xia,MO Shupei,HE Huiling,YANG Jun
(1.School of Electronics and Information Engineering,Guizhou Industry Polytechnic College,Guiyang 551400,China; 2.School of Automation,Central South University,Changsha 410083,China)
Abstract:
It is difficult to determine the topological structure and network parameters in indoor positioning of wireless network by means of radial basis function(RBF) neural network algorithm,and the positioning effect is not perfect.Therefore,a fuzzy C-means clustering algorithm based on kernel principal component analysis(KPCA-FCM) and simulated annealing adaptive genetic algorithm(SAGA) is proposed to optimize the wireless indoor positioning algorithm of RBF neural network.Firstly,KPCA is used to pre-process the original training data samples,and then KPCA-FCM algorithm is used to calculate the optimized clustering number and clustering centers.Secondly,by taking the clustering number and clustering centers as the number and center value of hidden layer neurons,the RBF neural network is created and its network parameters are mapped to SAGA algorithm.Thirdly,SAGA algorithm is used to optimize network parameters,and the optimal solution is mapped back to RBF neural network.Finally,the sample data is used to train and test the RBF neural network,and the algorithm model of RBF neural network is established.Experiments show that in the same environment,the positioning accuracy of the proposed algorithm is increased by 48.41%,higher than that of the traditional RBF neural network.
Key words:  wireless indoor positioning  RBF neural network  kernel principal component analysis  fuzzy C-mean clustering  simulated annealing adaptive genetic algorithm
安全联盟站长平台