首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 59次   下载 0 本文二维码信息
码上扫一扫!
一种目标密集环境下的雷达目标与IFF点迹相关算法
董杰
0
((中国西南电子技术研究所,成都610036))
摘要:
提出了一种基于联合概率数据关联(Joint Probability Data Association,JPDA)思想的雷达目标与敌我识别(Identification Friend or Foe,IFF)点迹相关方法,利用雷达目标历史IFF属性及关联概率作为先验信息,结合当前雷达目标航迹和IFF点迹的分布情况,通过基于JPDA的方法计算各雷达目标与IFF点迹的关联概率,最后利用目标识别规则库对目标属性进行判定。几种典型场景下的仿真结果表明,通过对目标的多次询问和相关概率的迭代,所提方法可有效提高目标密集环境下对我方合作目标的正确识别率,同时降低对非合作目标的误识别率。
关键词:  雷达目标  敌我识别  联合概率数据关联  相关概率
DOI:
基金项目:
A radar target-IFF plot correlation algorithm in target dense environment
DONG Jie
((Southwest China Institute of Electronic Technology,Chengdu 610036,China))
Abstract:
A new method of radar target-identification friend or foe(IFF)plot correlation based on joint probability data association(JPDA) is proposed.By using radar target history IFF attribute and correlation probability as prior information,according to the current radar track and IFF plot distribution,the association probability of each radar target and IFF plot is calculated based on the method of JPDA.Finally,the target attributes are determined by using the target recognition rule base.Simulation results under several typical scenarios show that,by interrogating the target several times and iterating the correlation probability,the method can effectively improve the correct identification probability of cooperative targets in dense environment and reduce the false identification probability of non-cooperative targets.
Key words:  radar target  identification friend or foe  joint probability data association  correlation probability
安全联盟站长平台