首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 122次   下载 0 本文二维码信息
码上扫一扫!
基于压缩感知的大规模MIMO下行信道状态信息获取
黎明源,段红光,李振一
0
(重庆邮电大学 通信与信息工程学院,重庆400065)
摘要:
信道状态信息(Channel State Information,CSI)对于大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)发挥高性能至关重要。但在上下行传输信道不存在互易性的频分双工(Frequency Division Duplex,FDD)制式下,若采用传统的信道估计方法会给CSI的获取带来巨大的导频开销和计算量。考虑利用大规模 MIMO 信道的虚角域稀疏性来减少获取CSI所需开销,在此基础上进一步研究了大规模 MIMO 正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中各子载波信道在虚角域的共同稀疏特性和稀疏支撑集的时间相关特性,达到降低信道维度的目的,则大大减少了基站对 CSI 获取所需的资源开销。同时,为了降低信道稀疏支撑集信息获取所需的导频开销和提高信息的时效性,利用压缩感知技术对支撑集进行估计。仿真结果验证了所提方案性能的优越性。
关键词:  大规模MIMO  压缩感知  稀疏支撑集  频分双工  信道估计
DOI:
基金项目:
Massive MIMO downlink channel state information acquisition via compressed sensing
LI Mingyuan,DUAN Hongguang,LI Zhenyi
(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
Abstract:
Channel state information(CSI)is essential for massive multiple-input multiple-output(MIMO).However,under the frequency division duplex(FDD)system in which the upstream and downstream transmission channels are not mutually reciprocal,the conventional channel estimation method will bring a huge pilot overhead and computational cost to the CSI acquisition.In order to reduce the cost of CSI acquisition,the virtual angular domain sparsity of massive MIMO channel is considered.On this basis, the common sparse characteristics of each subcarrier channel in a massive MIMO orthogonal frequency division multiplexing(OFDM) system and the temporal correlation of sparse support set are further studied.so as to reduce the channel dimension, thus greatly reducing the overhead of the base station for CSI acquisition.In addition,compressed sensing technology is used to reduce the pilot overhead required for acquisition of sparse support set information and improve the timeliness of information.Simulation results verify the superiority of the proposed scheme.
Key words:  massive MIMO  compressed sensing  sparse support set  frequency division duplex  channel estimation
安全联盟站长平台