首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 107次   下载 0 本文二维码信息
码上扫一扫!
多源置信综合的雷达与ESM协同跟踪方法
李亚军
0
(中国西南电子技术研究所,成都 610036)
摘要:
跟踪空间邻近目标时,仅依靠运动学信息不足以实现可靠的数据关联,而基于动目标指示器(Moving Target Indicator,MTI)雷达和电子支援措施(Electronic Support Measurement,ESM)的多源异类传感器数据融合可以通过提升数据关联性能达到改善跟踪性能的目的。通过构建基于五种成比例再分配规则(Five Proportional Conflict Redistribution Rules,PCR5)置信度量的数据关联策略,将目标运动学信息和属性信息结合做多特征推理,解决异类传感器数据的不确定性和不一致性;利用Dempster-Shafer(DS)证据理论方法进行属性融合更新,完成属性信息在时间序列上的相干积累,实现空间邻近目标的可靠跟踪。该方法从数据关联和状态估计两方面联合进行改进,通过引入属性信息提升数据关联的正确性,从而提升跟踪性能,实现多源异类信息下的协同跟踪。仿真表明,相比于仅雷达跟踪、雷达和ESM序惯跟踪等方案,该方法可有效提升跟踪精度和关联性能。
关键词:  协同跟踪  动目标指示器雷达  电子支援措施  置信度量
DOI:
基金项目:
Multi-source belief fusion based cooperative tracking of radar and ESM
LI Yajun
(Southwest China Institute of Electronic Technology,Chengdu 610036,China)
Abstract:
In tracking closely-spaced targets,the kinematic information is not enough to solve the problem of track interleaving caused by the misuse of measurement.Data fusion of heterogeneous sensors such as moving target indicator(MTI) radar and electronic support measurement(ESM) is the way to solve the problem.In this paper,a data association strategy based on five proportional conflict redistribution rules(PCR5) confidence measure is constructed,which combines kinematics information with attribute information for multi-feature reasoning to solve the uncertainty and inconsistency of heterogeneous sensor data.The Dempster-Shafer(DS) evidence theory is used to complete the coherent accumulation of attribute information in time series.This method improves the accuracy of data association by introducing attribute information,thus realizing the cooperative tracking under multi-source heterogeneous information.Simulation results show that tracking accuracy and data association performance are both improved effectively.
Key words:  cooperative tracking  moving target indicator(MTI) radar  electronic support measurement(ESM)  confidence measure
安全联盟站长平台