首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 212次   下载 0 本文二维码信息
码上扫一扫!
一种适用于稀疏多径信道的自适应均衡算法
周孟琳,陈阳,马正华
0
(常州大学 信息科学与工程学院,江苏 常州 213164)
摘要:
针对传统的自适应均衡算法在稀疏多径信道下性能表现不佳的问题,提出了一种基于基追踪降噪的自适应均衡算法。该算法利用稀疏多径信道下均衡器权值的稀疏性,将自适应均衡器的训练过程看作压缩感知理论中稀疏信号对字典的加权求和,并利用重构算法直接对稀疏权值进行求解,解决了迭代参数设置和收敛慢的问题。采用基追踪降噪作为重构算法并选用变量分离近似稀疏重构对该最优化问题进行求解,既提高了权值的重构精度又降低了计算的复杂度。仿真结果表明,所提算法能够以较低的计算量和较少的训练序列达到更优性能,这对提升系统的通信性能具有参考价值。
关键词:  稀疏多径信道  自适应均衡  压缩感知  基追踪降噪  变量分离近似稀疏重构
DOI:
基金项目:国家自然科学基金资助项目(61501061,61371171)
An adaptive equalization algorithm for sparse multipath channel
ZHOU Menglin,CHEN Yang,MA Zhenghua
(School of Information Science & Engineering,Changzhou University,Changzhou 213164,China)
Abstract:
For the poor performance of the traditional adaptive equalization algorithms for sparse multipath channel,an adaptive equalization algorithm based on basis pursuit de-noising is proposed.This algorithm uses sparseness of the weights of the adaptive equalizer in sparse multipath channel,and the adaptive equalizer training process can be modeled as a weighted summation of a dictionary by the sparse source based on compressed sensing theory.And the sparse weights can be achieved by the reconfiguring algorithm,so the problem of iterative parameter settings and convergence can be solved.In order to improve the accuracy of weight recovery and reduce the computational complexity,basis pursuit de-noising algorithm is chosen as the reconfiguring algorithm and sparse reconstruction by separable approximation is used to solve the optimization problem.The simulation shows that the proposed algorithm can achieve better performance with lower calculation amount and less training sequences,which has reference value for improving the communication performance of the system in sparse multipath channel.
Key words:  sparse multipath channel  adaptive equalization  compressed sensing  basis pursuit de-noising  sparse reconstruction by separable approximation
安全联盟站长平台