首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 253次   下载 0 本文二维码信息
码上扫一扫!
无穷范数松弛的低复杂度超奈奎斯特检测
来世豪,李明齐
0
(1.中国科学院 上海高等研究院,上海 201210;2.中国科学院大学,北京 100049;3.上海科技大学 信息学院,上海 201210)
摘要:
超奈奎斯特(Faster-than-Nyquist,FTN)速率传输可以有效提高频谱效率,但这种非正交传输方式引入的严重码间串扰相应提高了接收端的处理难度。针对该问题,设计了一种基于循环成块传输的低复杂度检测算法。最优检测被建模为无约束的二元二次规划(Boolean Quadratic Program,BQP)问题,为了求解该NP-hard问题,采用无穷范数约束松弛原问题的非凸可行解集,并基于次梯度下降法提出松弛问题的有效优化算法。数值仿真结果表明,所提算法在误比特率(Bit Error Rate,BER)性能上优于频域均衡,且在可接受的性能损失范围内算法执行效率远高于理论最优的最大似然序列估计(Maximum Likelihood Sequence Estimation,MLSE)。
关键词:  超奈奎斯特传输  循环块传输  二元二次规划  凸优化松弛  次梯度
DOI:
基金项目:国家自然科学基金资助项目(6511104204);上海市科委课题(18DZ2203900)
Low-complexity symbol detection for faster-than-Nyquist signaling by infinity norm relaxation
LAI Shihao,LI Mingqi
((1.Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China; 2.University of Chinese Academy of Sciences,Beijing 100049,China; 3.School of Information Science and Technology,ShanghaiTech University,Shanghai 201210,China))
Abstract:
As an implementation of non-orthogonal modulation,faster-than-Nyquist(FTN) signaling can increase spectral efficiency by intentional introducing inter-symbol interference(ISI),which incurs extra computational burden for receiver.This paper investigates the low complexity detection method for FTN signaling based on a special circulated block transmission model.First,the optimal detection problem is formulated as a non-convex boolean quadratic program(BQP).Relax technique is then used to get the infinity norm constrained approximate convex problem,which can efficiently solved by the proposed sub-gradient based algorithm.Finally,simulation results show that the proposed scheme can achieve better trade-off between bit error rate(BER) performance and computational complexity than frequency domain equalization(FDE) and maximum likelihood sequence estimation(MLSE).
Key words:  faster-than-Nyquist(FTN)  circulated block  boolean quadratic program  convex relaxation  sub-gradient
安全联盟站长平台