首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 131次   下载 0 本文二维码信息
码上扫一扫!
基于自适应分割算法的多跳频信号盲检测
梁涛,赵霞,卢广阔
0
(海军装备部 采购中心,北京 100071;中国西南电子技术研究所,成都610036)
摘要:
传统的观点大都将跳频信号盲检测问题视为能量域的门限阈值问题,而从统计域来看,实际接收到的跳频信号是在一些未知时刻突变而在这些时刻之间保持统计平稳性的分段平稳随机信号,那么基于非平稳时间序列的各种突变检测算法就可以引入其中。分析了当前跳频突变通信信号的统计特性,给出了其高阶分段平稳的模型。将Bemaola-Galan(BG)提出的自适应分割算法推导到高阶,并将其成功应用于多个跳频突发信号盲检测和自适应提取中。仿真结果表明,该算法不需要任何先验信息,能够有效检测和提取多个突发通信信号,且性能优于传统的能量检测法。
关键词:  跳频突发通信  盲检测  BG分割算法  分段平稳随机过程
DOI:
基金项目:
Blind detection of multiple FH signals based on modified BG algorithm
LIANG Tao,ZHAO Xia,LU Guangkuo
(Naval Equipment Procurement Centre,Beijing 100071,China;Southwest China Institute of Electronic Technology,Chengdu 610036,China)
Abstract:
The blind detection of frequency-hopping(FH) signals usually was treated as an energy threshold problem.However,non-stationary time series anomaly detection models will be applied when piecewise stationary is a prominent feature of real data that can be associated with regimes(segments) of different statistical properties.This paper analyzes the statistical properties of FH communication signals and suggests a high order piecewise stationary model.It derives a segmentation algorithm by Bemaola-Galan(BG) from the mean,standard deviation to the higher order.The modified BG algorithm is successfully used for blind detection and segmentation of multiple FH signals.Simulation results demonstrate the effectiveness and superiority of the proposed algorithm.
Key words:  frequency-hopping burst communication  blind detection  Bemaola-Galan(BG) segmentation algorithm  piecewise stationary stochastic process
安全联盟站长平台