首页期刊简介编委会投稿启事审稿流程读者订阅广告服务联系我们English
引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 99次   下载 4 本文二维码信息
码上扫一扫!
一维卷积神经网络用于雷达高分辨率距离像识别
殷和义,郭尊华
0
(山东大学(威海) 机电与信息工程学院,山东 威海 264209)
摘要:
针对人工提取高分辨率距离像(HRRP)优良特征比较困难的问题,研究了基于一维卷积神经网络(CNN)的HRRP识别方法。利用CNN具有分层学习特征的能力,训练CNN自动地从HRRP中学习有用的特征并分类。在仿真实验中描述了网络的相关配置,分析了不同激活函数、不同参数、不同网络结构的识别性能,对比了CNN与其他分类器的识别结果,用可视化特征图直观地说明了CNN通过卷积层能够学习到易于分辨的特征。实验结果表明CNN具有很好的识别性能。
关键词:  目标识别  高分辨率距离像  卷积神经网络
DOI:
基金项目:国家自然科学基金资助项目(61401252)
Radar HRRP target recognition with one-dimensional CNN
YIN Heyi,GUO Zunhua
(School of Mechanical,Electrical & Information Engineering,Shandong University,Weihai,Weihai 264209,China)
Abstract:
The one-dimensional Convolutional Neural Network(CNN) is applied to High Range Resolution Profile(HRRP) recognition to avoid the difficulties of extracting good features manually.The CNN can learn features hierarchically and extract useful features from HRRP and classify targets automatically.The configuration of the CNN is described,and the recognition performance of different activation functions,parameters,network structures and different classifiers are compared by simulations.Visual feature maps demonstrate that CNN can obtain distinguishable features through convolutional layer.The simulation results show that CNN can get features from HRRP effectively and has a good recognition performance.
Key words:  target recognition  high range resolution profile  convolutional neural network
安全联盟站长平台